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Abstract

Do firms’ production network contacts (suppliers, customers) help form connec-
tions with newer suppliers or customers? If they did, one would observe transitive
triads – a group of three firms all trading with each other - in production networks.
Using rich administrative data on firm-to-firm linkages from India, I provide first
evidence that triads are excessively prevalent in firm-to-firm production networks.
Further, I find that proximity through the production network is an important de-
terminant of trade frictions. I develop a quantitative general equilibrium model of
network formation between spatially distant firms. The model lends to elegant aggre-
gation and features endogenous trade frictions unlike standard trade models. The es-
timated model implies that network proximity explains a dominant majority of trade
frictions.
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1 Introduction

Trade frictions play a key role in models of international trade and economic geography
that seek to explain gains from market integration and unequal distribution of economic
activity. A large part of why countries or regions do not trade with each other as much
as a simple model predicts is attributed to trade frictions. Yet these frictions are tradition-
ally assumed to be of the iceberg form and largely attributed to distance, travel times and
other such measures of geographic proximity. Firm-to-firm trade in large spatial produc-
tion networks underlies much of trade across space. These networks often span across
borders within and across countries, and they can involve a large number of firms. Can
the network structure of production across space inform us about such costs?

A production network is made up of firms as nodes and supply chain relationships as
links. The smallest unit that consists of both these network elements is a dyad made up
of two nodes (a buyer and a supplier) and the link that connects them (a buyer–supplier
relationship). Most studies that seek to understand the origins of trade costs across space
have focused on dyadic relationships (e.g., buyer–supplier, origin-destination), as all re-
lationships in a network begin with a dyad. In this paper, I focus on triads as units of
large production networks. Why the focus on triads? A triad is the smallest network unit
where we can observe how a link affects a link or a node affects a link either directly or
indirectly connected — network dynamics that a dyad by itself cannot capture. To under-
stand how links that constitute complex networks affect trade costs, we have to begin by
studying triads.

In this paper, I utilize new micro-data on firm-to-firm linkages between Indian firms
to document excess prevalence of triads in production networks and shine light on new
origins of trade frictions through proximity on firm-to-firm production networks. Using
data on 103 million firm-to-firm relationships assembled from administrative VAT records
spanning across 5 years and pertaining to around 2.5 million Indian firms located across
141 districts, I find that firms are more likely to trade with production network contacts
(customers, suppliers) of their production network contacts than other firms. Almost
two-thirds of the firm-to-firm connections in the production network are part of transitive
triads - a triplet of firms that are all connected to each other.1 Transitive triads occur 13,750
times more than what a baseline random network formation model would predict. When
accounting for spatial heterogeneity, transitive triads occur 600 times more frequently
and when accounting for heterogeneity in firm’s connectedness, transitive triads occur 90

1On the contrary, if there is exactly one pair of firms in a triplet that are not connected, the triad is said
to be intransitive.
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times more frequently.
Motivated by these facts, I develop a quantitative model of network formation be-

tween spatially distant firms. In the model, firms’ production processes consist of multi-
ple input requirements. Potential suppliers differ in the suitability of their goods for each
of these requirements. Firms randomly encounter potential suppliers and select the most
cost-effective suppliers for their production requirements. Firms are more likely to meet a
potential supplier if it it is a firm with which they have a common connection. Conditional
on meeting, firms are more likely to select a potential supplier for a larger proportion of
their requirements if it is able to sell at a lower price and produces a good that is more
suitable for its production requirements. The model is tractable even for large numbers
of firms and lends itself to elegant aggregation. At the aggregate level, trade flows de-
pend not only on variables that capture geographic proximity but also those that capture
network proximity. I find that estimated trade frictions between Indian districts are dom-
inantly explained (75%) by network proximity, measured by second-order connectedness
between districts.

In contrast to standard trade models, trade frictions are determined endogenously in
the model here. This is because firm-to-firm connections are first formed due to geo-
graphic proximity which then leads to formation of further connections due to network
proximity and so on. To take endogenous determination of trade frictions into account,
I develop a new procedure for counterfactual analysis, modified relative to the exact hat
algebra approach. In the exact hat algebra approach (Dekle et al. (2008)) one solves for the
fixed point in terms of changes in wages and market access in response to shocks through
a tatonnement algorithm. The difference here is that the model leads to an additional
fixed point equation for trade frictions which needs to be solved simultaneously. Owing
to the non-linear structure of equations that solve for changes in market access, wages
and trade frictions simultaneously, the impact of trade costs shocks on trade shares is
non-linear unlike the class of models studied in Arkolakis et al. (2012).

Related Literature This paper contributes to three strands of literature.
First, it relates to the literature that studies the role of search and information fric-

tions in trade. Allen (2014), Startz (2021), and Dasgupta and Mondria (2018) attribute it to
information frictions that imply that customers and suppliers do not have complete infor-
mation about available alternatives. Eaton et al. (2016) and Arkolakis et al. (2021) propose
models of network formation with search and matching frictions to quantify what pro-
portion of trade costs can be attributed such frictions as opposed to iceberg trade costs.
Relative to these papers, I introduce network proximity as a channel for information fric-
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tions when firms are looking for suitable suppliers.
Second, it relates to the literature that propose models where new export destina-

tions are similar to a firms’ previous destinations. These include Chaney (2014, 2018) and
Morales et al. (2019). Relative to these papers, I use observed micro-data on firm-to-firm
linkages to construct new measures of network proximity between locations such that
similarity between previous and new export destinations arises from observed network
proximity.

Finally, it is related to papers that developed model of endogenous production net-
work formation between spatially distant firms. These include Eaton et al. (2016), Pan-
igrahi (2022), and Arkolakis et al. (2021). Relative to these papers, I introduce a model
of network formation where trade frictions are endogenously determined via network
proximity.

2 Data & Stylized Facts

In this section, I document new facts about firm-to-firm production networks that show
that network proximity affects likelihood of firm-to-firm trade. I begin by describing
the source of data. I then describe subnetwork configurations that are helpful in infer-
ring how network proximity affects firm-to-firm trade. I follow up with calculations that
suggest that such subnetwork configurations appear in much larger numbers when com-
pared to standard statistical models.

2.1 Sources of Data

The primary dataset for this paper consists of the universe of firm-to-firm transactions as-
sembled from commercial tax authorities of five Indian states (viz. Gujarat, Maharashtra,
Tamil Nadu, Odisha, and West Bengal) between 2011-12 and 2015-16. These states had a
nominal GDP of $738 billion in 2015-16, accounting for nearly 40% of GDP. Among these
states, the largest (Maharashtra) accounts for roughly 14% of national GDP while the
smallest (Odisha) accounts for a little over 2%. It includes transactions between all firms
registered under the value- added tax system in these states. The dataset records 103 mil-
lion inter- firm relationships between approximately 2.5 million firms located across 141
districts in these 5 states.
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2.2 Transitive and Intransitive Triads in Production Networks

I look at subnetwork configurations that help infer whether network proximity affects
firm-to-firm trade. I focus on triads as units of large production networks. Why the
focus on triads? A triad is the smallest network unit where we can observe how a link
affects a link or a node affects a link either directly or indirectly connected. If having a
common connection on the production network, makes it more likely for a pair of firms to
directly trade with each other, then the pair along with the firm they are both connected
to would form a transitive triad. Triads in production networks can be either transitive or
intransitive.

A triad is a group of three firms such that there is at least one firm in the group that is
connected both of the other two firms. If there is only one such firm, the triad is intran-
sitive. If all firms are such, then the triad is transitive. To understand this terminology,
let’s consider three firms A, B, and C. Suppose A trades with B and B trades with C. If A
does not trade with C, then the triad is intransitive making B the only firm in the group
to be connected to both of the other firms, A and C. If A trades with C, then the triad is
transitive and all firms in the group are connected to the other two firms.

This classification of triads would be exhaustive for undirected graphs - networks
where the relationship between two nodes is not directed. Production networks are di-
rected graphs - networks where the relationship between two nodes (firms) is directed.
That is, if A sells intermediate inputs to B, then B buys intermediate inputs from A. Hence,
the classification of triads, both transitive and intransitive, is richer. On one hand, intran-
sitive triads occur in three unique configurations. First, they can appear as a divergent
intransitive triad - when A buys from B and C buys from B. Second, they can appear as
a convergent intransitive triad - when A sells to B and C sells to B. Finally, they can ap-
pear as a chain intransitive triad - when A sells to B and B sells to C. On the other hand,
transitive triads occur in two unique configurations: cyclic and acyclic transitive triads.
A transitive triad would be acyclic if A sells to B, B sells to C, and A also sells to C. A
transitive triad would be cyclic if A sells to B, B sells to C, and C in turn sells to A. Figure
2.1 depicts various configurations of transitive and intransitive triads.

To count the number of different triads in the production network, I utilize the adja-
cency matrix associated with the production network. Let A denote the adjacency matrix
of the production network where the (i, j)th element takes the value 1 if i is a supplier to
j and 0 if it is not. Let 1 denote a vector of ones. Table 1 provides formulas for comput-
ing counts of different configurations from network data. The number of intransitive and
transitive triads in the production network are reported in Table 2. It shows that among
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Figure 2.1: Intransitive and Transitive Triad Configurations
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Table 1: Computation of Triad Census

Configuration Count

Intransitive Triads
Divergent 1′

(
1
2 A′A− A2 ◦ A

)
1

Convergent 1′
(

1
2 AA′ − A2 ◦ A

)
1

Chains 1′
(

A2 − A2 ◦ A′ − A2 ◦ A
)

1

Transitive Triads Cyclic 1
3 1′
(

A2 ◦ A′
)

1
Acyclic 1′

(
A2 ◦ A

)
1

intransitive triads, divergent triads are most likely, followed by chains and then conver-
gent triads. Among transitive triads, acyclic triads are almost 20 times more likely than
cyclic triads. This pattern is consistent across all years of data.

To assess dynamics of formation of relationships between pairs of firms that had a
common connection in the previous period but were not directly connected, I count cases
where pairs of firms that start trading in the current period were only indirectly con-
nected in the previous period. Such occurrences are called triadic closures, cases where
intransitive triads in the previous period turn into transitive triads in the current period.
Closure of intransitive triads of the divergent and convergent types leads to formation
of an acyclic transitive triad. Closure of chain intransitive triads can lead to either the
formation of a cyclic or acyclic transitive triad. Figure 2.2 depicts various kinds of triadic
closures. Let B denote a matrix such that the (i, j)th element takes the value 1 if i is a sup-
plier to j in the current period but not in the previous period. Table 3 provides formulas
for computing counts of different closures from network data. Table 4 reports the counts
of such closures across all years of the data. It shows that divergent and convergent clo-
sures are more numerous than acyclic chain closures, followed by cyclic chain closures.
This pattern is consistent across all years of data.
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Table 2: Counts of Intransitive and Transitive Triads

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016

Intransitive:

Divergent 1,541,767,883 1,674,068,239 1,847,644,020 2,285,340,927 2,391,444,882
Convergent 710,538,443 767,975,704 884,390,233 916,403,383 965,808,255
Chains 831,275,833 901,136,158 1,036,222,732 1,093,610,280 1,161,854,619

Transitive:

Acyclic 47,210,129 48,624,599 53,535,783 55,098,166 59,459,796
Cyclic 2,727,048 2,770,515 3,192,921 3,025,801 3,238,061

Figure 2.2: Triadic Closures

(a) Divergent
Closure

B

A C

(b) Convergent
Closure

B

A C

(c) Acyclic Chain
Closure

A B C

(d) Cyclic Chain
Closure

A B C

Table 3: Triadic Closure Census Formulas

Configuration Count
Cyclic Chain Closure 1′

(
A2 ◦ B′

)
1

Acyclic Chain Closure 1′
(

A2 ◦ B
)

1
Divergent Closure 1

2 1′ (A′A ◦ B) 1
Convergent Closure 1

2 1′ (AA′ ◦ B) 1

Table 4: Triadic Closure Counts

2012-2013 2013-2014 2014-2015 2015-2016

Divergent Closure 13,091,156 13,712,393 14,058,856 15,532,098
Convergent Closure 12,281,334 12,520,390 13,202,401
Cyclic Chain Closure 2,542,209 2,668,685 2,746,763 2,781,865
Acyclic Chain Closure 9,658,748 10,359,705 10,725,559 11,582,947
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Table 5: Triad Census across Group Triads

Configuration Count for (i, j, k)
Cyclic L′i

(
A× diag

(
Lj
)
× A ◦ A′

)
Lk

Acyclic L′i
(

A× diag
(

Lj
)
× A ◦ A

)
Lk

Chains L′i A× diag
(

Lj
)
× ALk

Divergent
(

1− 1
2I (i = k)

) (
L′i A

′ × diag
(

Lj
)
× ALk

)
Convergent

(
1− 1

2I (i = k)
) (

L′i A× diag
(

Lj
)
× A′Lk

)
Furthermore, these triads can be classified based on the location at which firms in the

triad are located. Using information on the district where each firm is located, I count the
number of triads (transitive and intransitive) in each triplet of districts. Let L be a matrix
such that the (i, j)th element is 1 if i is located in j and 0 otherwise and Lr denote the
rthcolumn of L. For any triplet of districts (i, j, k), the formulas for computing the number
of triads are in Table 5.

2.3 Excess Prevalence of Transitive Triads

Having enumerated counts of triad configurations, I now turn to assess if they are more
in number than expected. I proceed in two ways. First, I evaluate if such configurations
occur in much larger numbers than would be predicted by a model where firm-to-firm
connections are formed uniformly with the same probability. Second, I evaluate if firm
pairs that have at least one common connection are more likely to be connected than those
that do not.

Consider the Erdos-Renyi random graph as the baseline random network formation
model. Much like the uniform distribution for random variables where all values in the
support are drawn with equal probability, the Erdos-Renyi random graph is one where all
links are formed with equal probability. Using the Erdos-Renyi random graph as a bench-
mark, I assess if the observed number of triads is more than what a Erdos-Renyi model
would predict. Suppose all links between firms were formed with the same probability
p. An estimate of this probability can be obtained as the ratio of the number of observed
links and the number of possible links that could be formed between M firms. The latter
is (M

2 ) and the former is obtained from the data. With a group of three firms, there are
three possible pairs of firms between whom links can be formed. This leads to four pos-
sible outcomes: {0, 1, 2, 3} links. The probability of intransitive triads is (3

2)p2(1− p) and
that of transitive triads is (3

3)p3. With M firms, there are (M
3 ) unique triplets of firms. The

expected number of intransitive and transitive triads are therefore (3
2)p2(1− p)(M

3 ) and
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Table 6: Expected Count of Triads in Erdos-Renyi Model

Configuration Expected Count
Intransitive (M

3 )(
3
2)p2(1− p)

Transitive (M
3 )(

3
3)p3

Table 7: Expected Count of Triads in Erdos-Renyi Model with group heterogeneity

Configuration Expected Count (i, j, k)

Intransitive


((

1− pij
)

pjk pik + pij
(
1− pjk

)
pik + pij pjk

(
1− pij

))
Mi MjMk i ̸= j ̸= k(

2pii (1− pii) pik + p2
ii (1− pik)

)
(Mi

2 )Mj i = j ̸= k
3p2

ii (1− pii) (
Mi
3 ) i = j = k

Transitive


pij pjk pik Mi MjMk i ̸= j ̸= k
p2

ii pik(
Mi
2 )Mk i = j ̸= k

p3
ii(

Mi
3 ) i = j = k

(3
3)p3(M

3 ) respectively as reported in Table 6.
The top panel in Table 8 reports the overlikelihood of intransitive and transitive triads

in the actual data relative to the Erdos-Renyi model. It shows that while intransitive triads
are six times more likely to occur, transitive triads are 13,750 times more likely to occur. To
account for heterogeneity across nodes, I consider a heterogeneous version of the Erdos-
Renyi model where the probability of connecting varies by the pair of locations in which
the firm pair is located or how connected the each firm is. I group firms into bins (based
on location and connectivity) and allow for heterogeneous probability of link formation
between a pair of groups. Table 7 reports the formula for counting the expected number
of triads.

p̂ij =


# connections

Mi Mj
i ̸= j

# connections
(

Mi
2 )

i = j

In the first exercise, I allow the probability of connecting vary by the pair of locations
that the firms are located in. The second panel in Table 8 reports the overlikelihood of
triads when accounting for heterogeneity in probability of link formation by their loca-
tion. It shows that while intransitive triads are 2300 times less likely in the model than
observed in data, transitive triads are 600 times more likely. In the second exercise, I al-
low the probability of connecting vary by the pair of degree quantile that firms would
fall into. The third panel in Table 8 reports the overlikelihood of triads when account-
ing for heterogeneity in probability of link formation by their degree quantile. It shows
that while intransitive triads are 23 times less likely in the model than observed in data,
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Table 8: Overlikelihood relative to Erdos-Renyi Random Graph

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016

Baseline:

Intransitive 6 6 6 7 6
Transitive 13078 13722 13723 14094 14141

Location Heterogeneity:

Intransitive 1/2207 1/2049 1/2375 1/2398 1/2545

Transitive 630 623 629 571 586

Degree Heterogeneity:

Intransitive 1/22 1/22 1/24 1/23 1/24

Transitive 78 79 89 94 98

Triadic Closure:

Divergent Closure 390 399 399
Convergent Closure 779 782 771
Acyclic Chain Closure 1082 1137 1102 1131
Cyclic Chain Closure 285 293 282 272

transitive triads are 90 times more likely.
The bottom panel of Table 8 shows that divergent closures are 400 times more likely

than the baseline Erdos-Renyi model. Convergent closures are 780 times more likely.
Acyclic and cyclic chain closures are respectively 1100 and 300 times more likely.

I now turn to the next exercise, to evaluate if a pair of firms that have a common
connection are more likely to directly trade with each other. Of the 23× 106 first order
connections between firms, 15× 106 firms also simultaneously also have a second order
connection between them. There are around 1.6× 106 nodes in the network. This implies
that there are 2.56× 1012 unique pairs of firms. Of these 0.9× 109 have at least one second
order connection between them. These numbers imply the following. The unconditional
probability of a link forming between a pair of firms is 23×106

2.56×1012 = 9× 10−6. Conditional

on having a second order connection, the probability is 15×106

0.9×109 = 16× 10−3. The condi-

tional probability is therefore 16×10−3

9×10−6 ≈ 1800 times the unconditional probability.
Furthermore, suppose we divide pairs of firms into two groups: one where the pairs

have a second-order connection and one where they do not. The first group consists of
0.9 × 109. the probability of link formation between those firm pairs is 15×106

0.9×109 = 16 ×
10−3. The second group consists of 2.56 × 1012 − 0.9 × 109 ≈ 2.56 × 1012 pairs, so the
probability of a link in this group of firm pairs is 8×106

2.56×1012 = 3.125 × 10−6. The link
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formation probability in the first group is therefore 16×10−3

3.125×10−6 ≈ 5120 times the second
group.

2.4 Network Proximity and Aggregate Trade Flows

Empirically, locations with higher geographic proximity trade more. Hence, in gravity
models, locations with geographic proximity are typically modeled to trade more. Are
there other factors, conditional on distance, that makes it more likely for location pairs
to trade more? Is distance a proxy for other properties of the network? I explore a new
notion of proximity between a pair of locations – through a third location. In particular, I
count how many times it is the case that for three locations (o, r, d), a firm in o has contact
in r which then has a contact in d. This can happen in four ways. First, the firm in o
sells to a customer in r which itself sells to a customer in d – an outgoing chain from o
to d through r. Second, the firm in o buys from a supplier in r which itself buys from a
firm in d – an incoming chain that comes from d to o though r. Third, a firm in o and
a firm in d could have a common seller in r – a divergent connection between o and
d through r. Finally, a firm in o and a firm in d could have a common buyer in r – a
convergent connection between o and d through r. Table 9 provides formulas counting
such configurations across location triplets (o, r, d).

Table 10 reports the results of gravity regressions implied by the model in Eaton et al.
(2013) but including variables measuring network proximity between locations. Network
proximity between a pair of locations (o, d) is measured as the number of second-order
connections (of each type) between o and d through all third locations r. Column (1) re-
ports results of gravity regression with the usual distance and border variables that cap-
ture geographic proximity. Column (2) reports results when including network proxim-
ity variables. Column (3) reports results with modified network proximity variables that
exclude second-order connections that either go through the origin or destination from
the count. Focussing on the distance coefficient, the table shows that including network
proximity variables almost halves the coefficient. Furthermore, among the various con-
figurations, number of convergent and outgoing chain configurations are most positively
predictive of trade. These results show that locations that are closer in the production
network trade more.
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Table 9: Second-order Connections between Locations

Configuration Count for (o, r, d)
Incoming Chains o ← r ← d L′o A′Dr A′Ld
Outgoing Chains o → r → d L′o ADr ALd

Divergent o ← r → d
(

1− 1
2I {o = d}

)
L′o A′Dr ALd

Convergent o → r ← d
(

1− 1
2I {o = d}

)
L′o ADr A′Ld

3 Model

In this section, I describe a model of trade between multiple locations that accommodates
heterogeneity in consumer preferences, heterogeneity in technological requirements of
firms and arbitrary production networks. The model economy consists of many firms
and households at many locations. Firms produce using local labor and intermediate in-
puts sourced from suppliers potentially spread across multiple locations. Trade between
locations is subject to iceberg trade costs , that is, a firm producing at o needs to ship τod

units of a good for one unit of good to arrive at d.

3.1 Technology and Market Structure

Firms’ production processes involve combining labor and accomplishing a set of tasks by
sourcing intermediate inputs from other firms. In particular, the production function for
any firm b at location d is defined over labor and a discrete number of tasks (indexed by
k ∈ Kd(b) ≡ {1, · · · , Kd(b)}) as:

yd(b) = zd(b)
(

ld(b)
1− αd

)1−αd
(

∏k∈Kd(b) md(b, k)1/Kd(b)

αd

)αd

,

md(b, k) = ∑
s∈Sd(b)

mod(s, b, k),

where ld(b) is the amount of labor input used by firm b, md(b, k) is the quantity of ma-
terials utilized to accomplish task k, zd(b) is the idiosyncratic Hicks-neutral productivity
with which firm b produces, and Kd(b) is the number of tasks in the production function
of firm b.

Among all the firms in the economy, firm b encounters only a few and can source in-
termediate inputs to accomplish tasks only from those firms. In particular, it encounters
a potential supplier s with probability λϕod(s)

M via independent Bernoulli trials. The re-
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Table 10: Gravity Regressions

Dependent Variable: Aggregate Trade Share between (o, d)

(1) (2) (3) (4) (5)
r /∈ {o, d} r /∈ {o, d}

log(distance) -0.712 0.030 -0.325 -0.708 -0.332
(0.111) (0.037) (0.050) (0.045) (0.049)

interstate -2.125 -0.256 -0.884 -2.128 -0.853
(0.197) (0.098) (0.133) (0.090) (0.132)

interdistrict -1.852 -0.401 -1.124 -1.839 -1.149
(0.222) (0.075) (0.083) (0.082) (0.083)

neighbor 0.251 0.000 0.318 0.248 0.326
(0.169) (0.040) (0.049) (0.052) (0.049)

Sectoral Correlation 0.062 -0.187
(0.063) (0.056)

# Convergent 0.388 0.476 0.482
(0.032) (0.037) (0.038)

# Divergent 0.048 0.044 0.057
(0.038) (0.041) (0.041)

# Outgoing Chains 0.820 0.424 0.420
(0.049) (0.049) (0.049)

# Incoming Chains -0.173 -0.167 -0.172
(0.029) (0.036) (0.037)

Fixed Effects:
Origin×Year ✓ ✓ ✓ ✓ ✓
Destination×Year ✓ ✓ ✓ ✓ ✓
Pseudo R2 0.073 0.097 0.083 0.073 0.082
Squared Correlation 0.793 0.858 0.814 0.792 0.815
# observations 1412 × 5 1412 × 5 1412 × 5 1412 × 5 1412 × 5

Note. Standard errors in parentheses, two-way clustered by origin–year and destination–year. Observa-
tions pertain to all bilateral pairs between 141 districts for 5 years. The distance between district pairs is
calculated as the distance between their centroids. A district’s distance to itself is calculated as the radius of
the circle with the same area as the district. Estimation is carried out using a multinomial PML specification
a la Eaton et al. (2013). Two-way clustering is done as in Cameron et al. (2011). Pseudo R2 is calculated as
in McFadden (1974).
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stricted set of potential suppliers, denoted by Sd(b), is therefore completely determined
as the outcome of these Bernoulli trials for meeting each firm and is common for all tasks.
While outputs of potential suppliers are perfectly substitutable for accomplishing any
task, they differ in their suitability for the task in question, captured by their respective
match-specific productivities. For each of its tasks, firm b selects the supplier that offers
the lowest effective price. For simplicity, I assume that firms engage in marginal cost
pricing behavior when sourcing inputs.

3.2 Cost Minimization and Input Sourcing

I now turn to firms’ cost minimization problem. Selecting the cost-minimizing input bun-
dle consists of choosing not only who to source inputs from but also how much to buy
from each of them. For any task k in firm b’s production function, the cost-effectiveness of
a supplier s from location o in Sd(b) depends on three factors: (a) the marginal cost of s,
denoted co(s); (b) the trade cost faced by s of shipping goods to d, τod; and (c) the match-
specific productivity when b utilizes the output of s to accomplish the task, denoted by
aod (s, b, k). In particular, firm b chooses the supplier that offers the cheapest price, that is,

s∗d(b, k) = arg min
s∈Sd(b)

{
co(s)τod

aod(s, b, k)

}
. (3.1)

Now, taking wage wd and effective prices {pd(b, k) : k ∈ Kd(b)} (defined below) as
given, the firm’s unit cost function is given by:

cd (b) =
w1−αd

d

(
∏k∈Kd(b) pd(b, k)1/Kd(b)

)αd

zd(b)
, (3.2)

where pd(b, k) is determined according the following equation:

pd(b, k) = min
s∈Sd(b)

{
co(s)τod

aod(s, b, k)

}
. (3.3)

3.3 Closing the Model

Household Preferences

Households are modeled analogously with tasks in their utility function. They encounter
potential suppliers and select the most cost-effective suppliers for each task similar to
firms sourcing inputs. Each household supplies one unit of labor inelastically to local
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firms and receives labor income. Firms rebate any profits to local households.

Equilibrium Definition

Let σ ≡ {z, τ,S ,K, a} denote the aggregate state of the economy. Here z denotes the
vector of idiosyncratic productivities of firms, τ denotes the vector of trade costs across
all pairs of locations, S denotes the sets of potential suppliers of all firms and households,
K denotes the sets of tasks of all firms and households, and a denotes the vector of all
match-specific productivities. All of these objects are exogenous. An equilibrium in this
economy is an allocation and a price system such that (a) households and firms select
suppliers for tasks; (b) firms set prices for other firms and households under marginal
cost pricing; (c) households maximize utility; (d) firms minimize costs; and (e) market
clears for each firm’s goods and for labor at each location. This completes description of
the economic environment in the model.2

4 Estimation and Results

4.1 Taking Model to Data

To map the model to micro-data on firm-to-firm sales for estimation, I proceed in four
steps. First, I utilize the recursive representation of network formation between firms
to cast it as a quasi- dynamic programming problem. Second, I show that the model
delivers closed-form characterization of conditional choice probabilities in this quasi-
dynamic discrete choice setting. Third, I describe how these conditional choice prob-
abilities coupled with multiple discrete choice across tasks lead to a multinomial logit
model of supplier choice. Finally, I tackle the computational burden imposed by the
high-dimensionality of the non-linear estimation problem by exploiting special features of
the multinomial likelihood specification. The resulting estimation framework is scalable
and circumvents computational difficulties pervasive in estimation of network formation
models with large numbers of firms.

4.1.1 Conditional Choice Probabilities & Firm-to-Firm Trade

I begin by casting network formation between firms as a quasi-dynamic programming
problem. In particular, combining equations (3.2) and (3.3), I find that marginal cost of

2A detailed description is provided in Appendix A
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any firm b admits the following recursive representation.

cd(b) =
w1−αd

d
zd(b)

× ∏
k∈Kd(b)

min
s∈Sd(b)

{
τod

aod(s, b, k)
× co(s)

} αd
Kd(b)

(4.1)

This representation is akin to a setting with dynamic discrete choice (albeit with multi-
ple discrete choice). The estimands in this estimation problem are trade costs

{
τod : (o, d) ∈ J 2}

which are exogenous and firms’ marginal costs {co(s) : s ∈ M} which are endogenously
determined, unobserved in the data and run into millions. I utilize the conditional choice
probability approach to estimate the model following Hotz and Miller (1993). In this con-
text, conditional choice probabilities are the probabilities with which any given supplier
s is chosen for any one of the buyer b’s tasks conditional on its marginal cost being co(s).
I proceed to show next that the model delivers closed-form predictions for these proba-
bilities.

I turn to expressions for conditional choice probabilities and hence predictions for
firm-to-firm trade. I assume that match-specific productivities are drawn independently
for all potential suppliers for each of the tasks in firms’ production functions from a Pareto
distribution as stated in the following assumption.

Assumption 1. Match-specific productivities are drawn independently according to the following
Pareto distribution:

Fa(a) = 1− (a/a0)
−ζ .

In a sufficiently large economy such that 0 < λ/M ≪ 1, |λaζ
0 − 1| < ε1, and |a0| < ε2

for arbitrarily small values of ε1 and ε2 one can obtain closed-form expressions for con-
ditional choice probabilities. Recall from equation (3.1) that firms choose suppliers for
tasks based on suppliers’ marginal costs, trade costs faced by them, and match-specific
productivities associated with the task under consideration. While trade costs τ consti-
tute σ0, match-specific productivities are unknown and suppliers’ marginal costs co(s)
are determined endogenously. I therefore characterize conditional choice probabilities
for supplier choice, i.e., probabilities for choice of supplier conditional on its marginal
cost but in expectation over match-specific productivities that are yet to be realized. Let
π0

od(s, b) denote the probability with which firm b selects firm s for any one of its tasks.
Prior to encountering and realizing match-specific productivities for each task, the prob-
ability of firm s getting selected for any one of the tasks by firm b is common across all
tasks. That is, π0

od (s, b) = π0
od(s, b, k) = E{σ1}

[
1
{

s = s∗d(b, k) | σ0, σ1
}]

where the expecta-
tion operator is over all realizations of σ1. The following proposition provides expressions
for conditional choice probabilities π0

od (s, b).
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Proposition 1. For any realization of σ0, conditional on firm s’s marginal cost being co(s), the
probability with which any firm b located in d selects firm s located in o for any given task is

π0
od(s, b) =

co(s)−ζϕod(s)τ
−ζ
od

∑s′∈M co′(s′)−ζϕo′d(s′)τ
−ζ
o′d

. (4.2)

Proof. See Appendix B.1.

The tractable expressions for firm-to-firm trade in Proposition 1 give rise to transpar-
ent estimating equations for the model, to which I turn next.

4.1.2 A Multinomial Logit Model of Supplier Choice

I reformulate the economic model developed so far as a multinomial logit model of sup-
plier choice for tasks of each of the firms and estimate it semi-parametrically with seller
fixed effects, seller-destination fixed effects and origin-destination fixed effects. Origin-
destination fixed effects correspond to a structural gravity specification for estimating
trade frictions. Trade frictions are then estimated by projecting bilateral fixed effects on
observables that capture geographic proximity such as distance and borders etc as well
as on observables that capture network proximity.

Making use of Proposition 1, the estimating equation can be expressed as a multino-
mial logit function:

E [πod(s, b)] =
co(s)−ζϕod(s)τ

−ζ
od

∑s′∈M co′(s′)−ζϕo′d(s′)τ
−ζ
o′d

(4.3)

Formally, the estimation problem is as follows:

∆∗ = arg max
∆

1
M ∑

b∈M
ln fMNL (D | ∆) , (4.4)

fMNL (D | ∆) ∝ ∏
s∈M

(
co(s)−ζϕod(s)τ

−ζ
od

∑s′∈M co′(s′)−ζϕo′d(s′)τ
−ζ
o′d

)πod(s,b)

,

where

∆ ≡
{{

co(s)−ζ : s ∈ M
}

, {ϕod(s) : (s, d) ∈ M×J } ,
{

τ
−ζ
od : (o, d) ∈ J 2

}}
and

D ≡
{

πod(s, b) : (s, b) ∈ M2
}

.
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The above specification with fixed effects however presents a problem of perfect multi-
collinearity in regressors. Note that dummy variables associated with

{
co(s)−ζ : s ∈ Mo

}
and

{
τ
−ζ
od : d ∈ J

}
are collinear for all such locations o. Hence, I make the following nor-

malizations so that these fixed effects are identified up to scale. For all s ∈ Mo, o ∈ J , let
co(s) = co c̃o(s) and ϕod(s) = ϕodϕ̃od(s) be such that

(
∑

s∈Mo

c̃o(s)−ζ ϕ̃od(s)

)−1/ζ

= 1,

∑
d∈J

c−ζ
o ϕodτ

−ζ
od

∑o′ c−ζ

o′ ϕo′dτ
−ζ

o′d
Md

∑d∈J
c−ζ

o ϕodτ
−ζ
od

∑o′ c−ζ

o′ ϕo′dτ
−ζ

o′d
Md

ϕ̃od(s) = 1.

The multinomial logit specification is problematic because of two reasons. On one
hand, firms’ marginal costs are endogenously determined and unobserved. They are esti-
mated semiparametrically as firm fixed effects. Since there are a large number of firms
in the economy, estimation would typically require high-dimensional non-linear opti-
mization over a very large number of parameters to solve for the estimates. This can be
computationally infeasible using standard Newton methods when the number of fixed
effects runs into millions. On the other hand, estimation of a generalized linear model
with millions of fixed effects leads to incidental parameters bias in the lower-dimensional
estimands.

However, these issues are taken care of by appealing to several special features of the
multinomial likelihood function. First, estimates can be obtained using the Poisson like-
lihood function with additional fixed effects (see Baker (1994); Taddy (2015)). Second,
Poisson likelihood estimation automatically satisfies adding up constraints implied by
the model (see Fally (2015)). Third, Poisson likelihood specification allows solving for
fixed effects in closed-form (for example, see Hausman et al. (1984)). Finally, subsequent
estimation of trade frictions using bilateral fixed effects does not suffer from the inciden-
tal parameters problem and hence can be conducted through the conditional maximum
likelihood approach.

Fixed Effects and Structural Gravity The first order conditions implied by the likeli-
hood maximization problem in equation (4.4) can be solved to obtain closed-form estima-
tors for fixed effects as described in the proposition below.

Proposition 2. The estimates from equation (4.4) are given by:
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(
c̃o(s)−ζ

)∗
=

∑b∈M πod(s, b)
∑b∈M πod(•, b)

∀s ∈ M, (4.5)

(
ϕ̃od(s)−ζ

)∗
=

∑b∈Md
πod(s,b)

∑b∈Md
πod(•,b)

∑b∈M πod(s,b)
∑b∈M πod(•,b)

∀(s, d) ∈ M×J , (4.6)

(
c−ζ

o ϕodτ
−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

)∗
=

1
Md

∑
b∈Md

πod (•, b) ∀(o, d) ∈ J 2 (4.7)

where πod (•, b) ≡ ∑s∈Mo πod (s, b).

Proof. See Appendix B.2.

Trade Frictions and Conditional Choice Probabilities With seller and seller-destination
fixed effects out of the way, thanks to equations (4.5), trade frictions can now be estimated
by projecting bilateral origin-destination fixed effects (from equation (4.7)) on bilateral
observables such as distance, borders etc., similar to gravity regressions, in additional to
variables that capture network proximity with the following estimating equation:

E

[(
c−ζ

o ϕodτ
−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

)∗]
=

exp
(

ln
(

c−ζ
o

)
+ ω′odγ + X ′odβ

)
∑o′ exp

(
ln
(

c−ζ
o′

)
+ ω′odγ + X ′o′dβ

) . (4.8)

This delivers estimates of origin fixed effects
(

c−ζ
o

)∗
and trade frictions arising from

geography
(

τ
−ζ
od

)∗
= exp (X ′odβ∗) and network structure

(
ϕod
)∗

= exp
(
ω′odγ∗

)
. Esti-

mates of conditional choice probabilities are then obtained from seller and seller-destination
fixed effects and fitted shares from the gravity regressions. Formally, the estimates of con-
ditional choice probabilities are given by

π∗od(s, b) =
(

c̃o(s)−ζ
)∗
·
(
ϕ̃od(s)

)∗ · π∗od(•, b), (4.9)

π∗od(•, b) =

(
c−ζ

o

)∗ (
ϕod
)∗ (

τ
−ζ
od

)∗
∑o′∈J

(
c−ζ

o′

)∗ (
ϕo′d

)∗ (
τ
−ζ
o′d

)∗ . (4.10)
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4.2 Estimation Results

Table 11 reports results of gravity regressions from equation (4.10). Columns (1) and (4)
show that including network proximity variable leads to a 40% decrease in the distance
coefficient. Among network configurations, outgoing chains and convergent configura-
tions increase most the likelihood of trade between locations. Incoming chains negatively
affect trade while the effect of divergent configurations is insignificant. Column (5) in-
cludes sectoral correlation in economic activity between origin and destination to capture
economic similarity. Despite its inclusion, the results from column (4) persist.

Using the estimated trade frictions from Table 11, Column (3), I conduct a Shapley
decomposition (see Shorrocks (2013)) of trade frictions into two components: geographic
proximity and network proximity. Table 12 shows that network proximity explains a
dominant majority of trade frictions.

5 Aggregation

For aggregation and counterfactual analysis, I adopt the large economy model due to
Al-Najjar (2004) which is characterized by a sequence of finite but increasingly large
economies {Et : t ∈N} that progressively discretizes the unit continuum. Along the se-
quence as the economy becomes more discretized, I make additional assumptions so that
the model has a well-defined limit. The probability of meeting potential suppliers in-
creases, i.e., limt→∞ λt = ∞, but at a rate slower than that at which the economy is dis-
cretized, i.e., limt→∞

λt
Mt

= 0. At the same time, match-specific productivities are drawn
from stochastically worse distributions as limt→∞ a0,t = 0. While the number of poten-
tial suppliers grows arbitrarily large and the match-specific productivity associated with
any single supplier is drawn from a stochastically worse distribution, the limit is well
behaved because the probability of encountering a supplier with match-specific produc-
tivity greater than value a does not change in the limiting economy, i.e., limt→∞ λta

ζ
0,t = 1.

Furthermore, the economy becomes discretized in a manner such that the proportion of
firms and households at every location is non-zero and finite.

I now proceed to characterize effective prices p (σ) and wages w (σ) in equilibrium in
the limiting economy, i.e., limt→∞ Et.
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Table 11: Model-Consistent Gravity Regressions

Dependent Variable: Average Trade Share between (o, d)

(1) (2) (3) (4) (5)
r /∈ {o, d} r /∈ {o, d}

log(distance) -0.99 -0.116 -0.639 -0.942 -0.609
(0.045) (0.031) (0.030) (0.045) (0.044)

interstate -2.579 -0.673 -1.524 -2.351 -1.242
(0.088) (0.062) (0.081) (0.088) (0.091)

interdistrict -2.262 -0.783 -1.502 -2.207 -1.504
(0.067) (0.047) (0.053) (0.070) (0.066)

neighbor 0.517 0.256 0.519 0.505 0.523
(0.047) (0.027) (0.033) (0.048) (0.042)

Sectoral Correlation 0.226 -0.024
(0.060) (0.046)

# Convergent 0.385 0.519 0.494
(0.029) (0.026) (0.035)

# Divergent 0.071 0.029 0.049
(0.033) (0.029) (0.032)

# Outgoing Chains 0.799 0.302 0.302
(0.046) (0.032) (0.036)

# Incoming Chains -0.138 -0.217 -0.203
(0.029) (0.030) (0.034

Fixed Effects:
Origin×Year ✓ ✓ ✓ ✓ ✓
Destination×Year ✓ ✓ ✓ ✓ ✓
Pseudo R2 0.119 0.139 0.125 0.119 0.125
Squared Correlation 0.887 0.964 0.908 0.887 0.908
# observations 1412 × 5 1412 × 5 1412 × 5 1412 × 5 1412 × 5

Note. Standard errors in parentheses, two-way clustered by origin–year and destination–year. Observa-
tions pertain to all bilateral pairs between 141 districts for 5 years. The distance between district pairs is
calculated as the distance between their centroids. A district’s distance to itself is calculated as the radius of
the circle with the same area as the district. Estimation is carried out using a multinomial PML specification
from equation (4.8). Two-way clustering is done as in Cameron et al. (2011). Pseudo R2 is calculated as in
McFadden (1974).

Table 12: Components of Trade Frictions

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 Overall

Network 75.13% 75.20% 73.61% 73.51% 73.65% 74.32%
Geographic 24.87% 24.80% 26.39% 26.49% 26.35% 25.68%
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5.1 Market Access & Distributions of Effective Prices

With marginal cost pricing, the distribution of effective prices faced by a firm for any of
its tasks is characterized by the distribution of the offer with the lowest effective cost to
the supplier. The following proposition provides the distribution of effective prices in the
limiting economy.

Proposition 3. For any realization of σ0, the effective prices of materials used by firm b to accom-
plish any task, pd(b, k) converge to the following distribution as t→ ∞:

Fpd (p) = 1− e−Ad pζ
,

where A ≡ {Ad : d ∈ J } is the unique positive solution to the following fixed point problem:

Ad = ∑
o∈J

ϕodτ
−ζ
od zζ

oµow−ζ(1−αo)
o E

[
Γ
(

1− αo

Ko(·)

)Ko(·)
]

Aαo
o , (5.1)

where µo denotes the proportion of firms at o and zζ
o = E

[
zo (s)

ζ
]
.3

Proof. See Appendix C.2.

While the effective price faced by individual firms varies across realizations of σ1,
the cross-sectional distribution in the limit economy does not. These distributions are
parametrized by a scale parameter Ad and a shape parameter ζ. Market access, given by
Ad, is a key object of interest because it summarizes the probabilistic access of firms at
d to inputs from all locations. The functional form suggests that firms at a location with
higher market access face stochastically lower effective prices. Specifically, if Ad > Ad′ ,
the distribution Fpd′ (·) first-order stochastically dominates Fpd (·).

5.2 Relative Wages in Trade Equilibrium

To define relative wages in trade equilibrium, I begin by characterizing sourcing proba-
bilities, that is, the probability with which any buyer sources inputs from location o for
any one its tasks. Conditional choice probabilities of supplier choice naturally aggregate
to sourcing probabilities, that is, sourcing probabilities can be obtained as the sum of con-
ditional choice probabilities associated with all the suppliers located at o. Conditional

3The gamma function Γ (·) is defined as Γ(x) =
∫ ∞

0 e−xmx−1dm.
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choice probabilities from Proposition 1 together with properties of the cross-sectional dis-
tributions of effective prices from Proposition 3 lead to the next proposition. This propo-
sition characterizes sourcing probabilities across origins by firm b, denoted by π0

od (•, b).

Proposition 4. For any realization of σ0, the probability with which any firm b located in d selects
a supplier from o for any given task is

π0
od(•, b) =

µow−ζ(1−αo)
o zζ

oE

[
Γ
(

1− αo
Ko(·)

)Ko(·)
]

Aαo
o ϕodτ

−ζ
od

Ad
. (5.2)

Proof. See Appendix C.3

These sourcing probabilities are independent of the identity of the buyer at the des-
tination and therefore can be written as π0

od(•,−). In the limiting economy, the aver-
age sourcing share across all buyers in the limiting economy coincides with the expected
value given by equation (5.2). This however does not mean that the sourcing shares across
individual buyers are identical either in the finite economy or the limiting economy. Buy-
ers at a destination may very well differ in their sourcing shares whether in the finite
economy or the limiting economy. Formally, the law of large numbers implies that in the
limiting economy,

1
Md

∑
b∈Md

πod(•, b) t→∞−−→ π0
od(•,−). (5.3)

I now turn to characterizing relative wages in the trade equilibrium in the limiting
economy. The following proposition shows that relative wages in the limiting economy
can be obtained as a solution to the system of equations (5.4).

Proposition 5. For any realization of σ ≡ {σ0, σ1}, w ≡ {wd : d ∈ J } solves the following
system of equations:

woLo

1− αo
= ∑

d∈J
π0

od (•,−)
wdLd

1− αd
. (5.4)

Further, for any σ and σ′ such that σ0 = σ′0 and σ1 ̸= σ′1:

w = w′. (5.5)

Proof. See Appendix C.4.

23



The above proposition also shows that, for any given realization of σ0, relative wages
are invariant across all networks realized for all values of σ1. This concludes the charac-
terization of equilibrium wages and brings us to the definition of the trade equilibrium
below.

Definition 1. For any given σ0, the trade equilibrium in the limiting economy is defined
as the vector of wages w such that (a) market access at each location satisfies equation
(5.1); (b) trade shares coincide with sourcing probabilities in equation (5.2) and (c) the
market clearing condition in equation (5.4) holds.

6 Quantitative Analysis (in progress)

6.1 Computation of Counterfactual Outcomes

I operationalize Propositions 3, 4, and 5 for counterfactual analysis by expressing them in
changes. The following definition states that and motivates the algorithm for evaluating
counterfactual outcomes in response to shocks that derive from a change in the aggregate
state σ0 to σ′0.

Definition 2. For any change in aggregate state σ0 to σ′0, equilibrium change in wages
ŵ ≡ {ŵd : d ∈ J } and welfare V̂ ≡

{
V̂d : d ∈ J

}
are characterized the following system

of equations for all realizations of σ1 or σ′1:4

Âd = ∑
o

πodτ̂od
−ζ ϕ̂odŵ−ζ(1−αo)

o Âαo
o

ϕ̂odϕod = g
({

πod, τ̂od
−ζ , ϕ̂od

}
o,d

,
{

ŵo, Âo, αo,
{

c̃o(s)−ζ
}

s∈o

}
o

)
π̂0

od =
τ̂od
−ζ ϕ̂odŵ−ζ(1−αo)

o Âαo
o

Âd
ŵowoLo

1− αo
= ∑

d

̂π0
od (•,−)π

0
od (•,−)

ŵdwdLd
1− αd

V̂d = ŵd Â1/ζ

d

where δ̂ ≡
{

δ̂od : (o, d) ∈ J 2
}

is function of shocks that capture the resultant effect of
change from σ0 to σ′0.

4The expression for welfare changes is derived in Appendix D.1.
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With this definition of the equilibrium in changes in the limiting economy, aggregate
and firm-level counterfactual outcomes in the limiting economy are computed in three
steps. First, I evaluate aggregate and firm-level outcomes such as intensity of use and
sales in the limiting economy in the initial state. Second, I evaluate changes in aggregate
outcomes when going from the initial state to the counterfactual state. This is done us-
ing a tâtonnement algorithm similar to Alvarez and Lucas (2007) and Dekle et al. (2008).
Finally, I evaluate aggregate and firm-level outcomes in the limiting economy in the coun-
terfactual state. Details of the procedure are as follows:

Suppose ϕod ≡ exp
(

∑m∈{I,O,D,C} γm (ωod,m)
)

where

ωod,I = # incoming chainsod

ωod,O = # outgoing chainsod

ωod,D = # divergentod

ωod,C = # convergentod

and {γm : m ∈ {I, O, D, C}} are the correspoding coefficients. For any change in σ0, δ̂ ≡{
δ̂od : (o, d) ∈ J ×J

}
, one can solve for change in wages ŵ ≡ {ŵd : d ∈ J } with the

following tâtonnement algorithm for some positive constant µ and tolerance value tol:

1. Start with a guess for the vector of change in wages, ŵ(0) and

2. For the vector of wage changes, in the tth iteration ŵ(t), compute change in mar-
ket access and endogenous trade costs as the solution to the following system of
equations:

Â(t)
d = ∑

o
πodτ̂

−ζ
od ϕ̂od

(
ŵ(t)

o

)−ζ(1−αo) (
Â(t)

o

)αo

ϕ̂
(t)
od =

exp
(

∑m∈{I,O,D,C} γm

(
ω

(t)
od,m

))′
ϕod(

ω
(t)
ord,I

)′
= E

[(
ρ
(t)
ro (·)

)′]
E

[(
ρ
(t)
dr (·)

)′]
(

ω
(t)
od,O

)′
= E

[(
ρ
(t)
or (·)

)′]
E

[(
ρ
(t)
rd (·)

)′]
(

ω
(t)
od,D

)′
= E

[(
ρ
(t)
ro (·)

)′ (
ρ
(t)
rd (·)

)′]
(

ω
(t)
od,C

)′
= E

[(
ρ
(t)
or (·)

)′]
E

[(
ρ
(t)
dr (·)

)′]
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(
ρ
(t)
od (s)

)′
=

1− exp
(
−κd

(
c̃o(s)−ζ

)
πod τ̂

−ζ
od ϕ̂od

(
ŵ(t)

o

)−ζ(1−αo)(
Â(t)

o

)αo
/Â(t)

d

)
1− exp (−κd)

3. Compute counterfactual sourcing probabilities as:

(
π
(t)
od

)′
= π

(t)
od

τ̂
−ζ
od ϕ̂od

(
ŵ(t)

o

)−ζ(1−αo) (
Â(t)

o

)αo

Â(t)
d

4. Compute excess demand for labor Z
(

ŵ(t)
)
≡
{

Zo

(
ŵ(t)

)
: o ∈ J

}
as:

Zo

(
ŵ(t)

)
=

1− αo

woLo
∑
d

(
π
(t)
od

)′
ŵ(t)

d
wdLd

1− αd
− ŵo

5. Update the vector of change in wages as ŵ(t+1) ← ŵ(t) + µZ
(

ŵ(t)
)

.

6. If ∥ŵ(t+1) − ŵ(t)∥ > tol, go back to (2), else end.

Welfare changes can then be computed as V̂d = ŵ(∞)
d

(
Â(∞)

d

) 1
ζ .

The counterfactual outcomes thus computed for the limiting economy correspond to
the expected value of outcomes for the finite economy in the counterfactual state since
the limiting economy is a continuum approximation of the finite economy. In contrast to
standard trade models, trade frictions are determined endogenously in the model here.
This is because firm-to-firm connections are first formed due to geographic proximity
which then leads to formation of further connections due to network proximity and so
on. The above procedure accounts for endogenous determination of trade frictions. In
the exact hat algebra approach (Dekle et al. (2008)) one solves for the fixed point in terms
of changes in wages and market access in response to shocks through a tatonnement al-
gorithm. The difference here is that the model leads to an additional fixed point equation
for trade frictions which needs to be solved simultaneously. Owing to the non-linear
structure of equations that solve for changes in market access, wages and trade frictions
simultaneously, the impact of trade costs shocks on trade shares is non-linear unlike the
class of models studied in Arkolakis et al. (2012).
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7 Conclusion

This paper proposes a new origin of trade frictions: proximity on firm-to-firm production
networks. Using rich administrative data on firm-to-firm linkages from India, I document
that triads are excessively prevalent in firm-to-firm production networks. Furthermore,
a firm-to-firm linkage is more likely to be part of a transitive triad than not. I find that
proximity through the production network is an important determinant of trade frictions.
I develop a quantitative general equilibrium model of network formation between spa-
tially distant firms. The model aggregates to structural gravity and features endogenous
trade frictions unlike standard trade models. Structural estimation of the model suggests
network proximity of the second-order explains a dominant majority of trade frictions.
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A Appendix: Model

The model economy E ≡ {M,L,J } consists of many firms (M) and households (L) at
many locations (J ). Firms produce using local labor and intermediate inputs sourced
from suppliers potentially spread across multiple locations. Each household supplies one
unit of labor inelastically to local firms. Firms rebate any profits to local households.
Trade between locations is subject to iceberg trade costs denoted by τod ≥ 1.

A.1 Household Preferences

The utility function for any household i at location d is defined over a discrete number of
tasks (also indexed by k ∈ Kd(i) ≡ {1, · · · , Kd(i)}) as:

ud (i) = ∏
k∈Kd(i)

qd(i, k)1/Kd(i),

qd(i, k) = ∑
s∈Sd(i)

qod(s, i, k),

where qd(i, k) is the quantity of goods consumed to fulfill need k and Sd(i) is the restricted
set of suppliers that i encounters due to search frictions.

For task k, household i chooses the supplier that offers the cheapest price, that is,

s∗d(i, k) = arg min
s∈Sd(i)

{
co(s)τod

aod(s, i, k)

}
, (A.1)

The effective price faced by i for task k denoted by pd(i, k) is then given by

pd(i, k) = min
s∈Sd(i)

{
co(s)τod

aod(s, i, k)

}
. (A.2)

Now, taking {pd(i, k) : k ∈ Kd(i)} as given, the household’s indirect utility function
can be defined as:

Vd(i) = max
{qd(i,k):k∈Kd(i)}

∏
k∈Kd(i)

qd(i, k)1/Kd(i) (A.3)

subject to ∑
k∈Kd(i)

pd(i, k)qd(i, k) = wd.
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A.2 Technology and Market Structure

The production function for any firm b at location d is defined over labor and a discrete
number of tasks (indexed by k ∈ Kd(b) ≡ {1, · · · , Kd(b)}) as:

yd(b) = zd(b)
(

ld(b)
1− αd

)1−αd
(

∏k∈Kd(b) md(b, k)1/Kd(b)

αd

)αd

,

md(b, k) = ∑
s∈Sd(b)

mod(s, b, k),

where ld(b) is the amount of labor input used by firm b, md(b, k) is the quantity of ma-
terials utilized to accomplish task k, zd(b) is the idiosyncratic Hicks-neutral productivity
with which firm b produces, and Sd(b) is the restricted set of suppliers that b encounters
due to search frictions.

For task k, firm b chooses the supplier that offers the cheapest price, that is,

s∗d(b, k) = arg min
s∈Sd(b)

{
co(s)τod

aod(s, b, k)

}
. (A.4)

The effective price faced by b for task k, denoted by pd(b, k), is given by

pd(b, k) = min
s∈Sd(b)

{
co(s)τod

aod(s, b, k)

}
. (A.5)

Taking wage wd and effective prices {pd(b, k) : k ∈ K} as given, the firm’s unit cost
function can be defined as:

cd(b) = min
{ld(b),{md(b,k):k∈Kd(b)}}

wdld(b) + ∑
k∈Kd(b)

pd (b, k)md (b, k) (A.6)

subject to zd(b)
(

ld(b)
1− αd

)1−αd
(

∏k∈Kd(b) md(b, k)1/K

αd

)αd

= 1.

A.3 Equilibrium Definition and Characterization

The aggregate state of the economy is denoted by σ ≡ {z, τ,S ,K, a} where

z ≡ {zo(s) : s ∈ M} ,
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τ ≡
{

τod : (o, d) ∈ J 2
}

,

S ≡ {Sd(i) : i ∈ L ∪M} ,

K ≡ {Kd(i) : i ∈ L ∪M} , and

a ≡ {aod(s, i, k) : (s, i, k) ∈ M× (L ∪M)×K}

An allocation in this economy is represented as ξ ≡ {l (σ) , m (σ) , q (σ) , y (σ)} and is
defined as a set of functions,

l (σ) ≡ {ld(b; σ) : b ∈ M} ,

m (σ) ≡
{

mod(s, b, k; σ) : (s, b, k) ∈ M2 ×K
}

,

q (σ) ≡ {qod(s, i, k; σ) : (s, i, k) ∈ M×L×K} ,

y (σ) ≡ {yo(s; σ) : s ∈ M} ,

that map the realization of the state to intermediate input and labor quantities, quantities
consumed and quantities produced. A price system is represented as ϱ ≡ {c (σ) , p (σ) , w (σ)}
and is defined as a set of functions,

c (σ) ≡ {co(s; σ) : s ∈ M} ,

p (σ) ≡ {pd (i, k; σ) : (i, k) ∈ (L ∪M)×K} ,

w (σ) ≡ {wd (σ) : d ∈ J } ,

that map the realization of the state to tasks’ prices for firms, needs’ prices for house-
holds, wage at each location and marginal costs of firms. This leads to the definition of
equilibrium in this economy as follows.

Definition 3. For any given state σ, an equilibrium in this economy is defined as an alloca-
tion and price system, (ξ, ϱ) such that (a) households select suppliers for needs and firms
select suppliers for tasks according to equations (3.1) and (A.1) respectively; (b) firms set
prices for other firms and households according to equations (A.5) and (A.2) respectively;
(c) households maximize utility according to equation (A.3); (d) firms minimize costs ac-
cording to equation (A.6); and (e) market clears for each firm’s goods and for labor at each
location as follows.

∑
b∈Md

ld(b) = Ld
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∑
i∈L

∑
k∈Kd(i)

τodqd(i, k)
aod(s, i, k)

1 {s = s∗d(i, k)}

+ ∑
b∈M

∑
k∈Kd(i)

τodmd(b, k)
aod(s, b, k)

1 {s = s∗d(b, k)} = yo(s)

B Appendix: Estimation and Results

B.1 Proof of Proposition 1

Consider a pair of firms s located in o and b located in d. Now, suppose the marginal cost
of firm s from o and it’s cost of shipping goods to d are co(s) and τod respectively. For
any task k and match-specific productivity aod(s, b, k) = a, the effective cost incurred by
s of delivering its goods for task k by b is co(s)τod

a . Supplier s is selected by b for task k
if b encounters s with match-specific productivity a and b does not encounter any other
supplier for whom it is effectively less costly to deliver the good (including the event that
b meets s and the match-specific productivity realized is higher than a). The probability
with which b selects s for any of its tasks with match-specific productivity a is given by:

π0
od(s, b, k | a) =

λϕod(s)
M

× ∏
s′∈M

(
1− λϕo′d(s′)

M
I

(
co′(s′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

))

=
λϕod(s)

M
× exp

(
∑

s′∈M
ln
(

1− λϕo′d(s′)
M

P

(
co′(s′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

))

Since λ = o(M), considering λ
M ≪ 1 and using the approximation ln (1 + x) ≈ x for

|x| ≪ 1, the above expression simplifies as:

π0
od(s, b, k | a) =

λϕod(s)
M

exp

(
− λ

M ∑
s′∈M

ϕo′d(s′)P
(

co′(s′)τo′d
ao′d(s′, b, k)

≤ co(s)τod
a

)

Taking expectation over all possible realizations of aod(s, b, k), we obtain:

π0
od(s, b, k) = E{a}

[
π0

od(s, b, k | a)
]

=
λϕod(s)

M

∫ ∞

0
exp

(
− λ

M ∑
s′∈M

ϕo′d(s′)P
(

co′(s′)τo′d
ao′d(s′, b, k)

≤ co(s)τod
a

))
dFa(a)
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=
λϕod(s)

M

∫ ∞

a0

exp

(
− λ

M ∑
s′∈M

ϕo′d(s′)P
(

ao′d(s′, b, k) ≥ co′(s′)τo′d
co(s)τod

a
))

d
(

1− (a/a0)
−ζ
)

=
λaζ

0ϕod(s)
M

∫ ∞

a0

exp

(
−

λaζ
0

M ∑
s′∈M

ϕo′d(s′)1
(

co′(s′)τo′d
co(s)τod

a ≥ a0

)(
co′(s′)τo′d
co(s)τod

a
)−ζ

− λ

M ∑
s′∈M

ϕo′d(s′)1
(

co′(s′)τo′d
co(s)τod

a ≤ a0

))
ζa−ζ−1da

=
ϕod(s)

M

∫ ∞

0
exp

(
− 1

M ∑
s′∈M

ϕo′d(s′)
(

co′(s′)τo′d
co(s)τod

)−ζ

a−ζ

)
d
(
−a−ζ

)
=

co(s)−ζϕod(s)τ
−ζ
od

∑s′∈M co′(s′)−ζϕo′d(s′)τ
−ζ
o′d

Γ(1)

=
co(s)−ζϕod(s)τ

−ζ
od

∑s′∈M co′(s′)−ζϕo′d(s′)τ
−ζ
o′d

Here, in the fifth line we utilize Assumption 2 which implies that in sufficiently large
economies limt→∞ λta

ζ
0,t → 1 and limt→∞ a0,t → 0 such that λ

M ∑s′∈M ϕo′d(s′)1
(

co′ (s
′)τo′d

co(s)τod
a ≤ a0

)
→

0 for all firms s′. Since πod(s, b, k) is independent of the identity of the task k, we write
π0

od(s, b) = π0
od(s, b, k). Further, since π0

od(s, b) is independent of the identity of the buyer
at any location d, we write π0

od(s,−) = π0
od(s, b).

B.2 Proof of Proposition 2

In our context, the multinomial random variable counts the number of successes in each
of the M categories (one for each other supplier s), after Kd(b) independent trials (one for
each task associated with b). Let π0

od(s, b) denote the probability of success and Kod(s, b)
denote the number of successes in category s, the probability of observing {Kod(s, b) : s ∈ Mo, o ∈ J }
conditional on the number of tasks Kd(b) is:

P ({Kod(s, b) : s ∈ M} | Kd(b)) = Kd(b)! ∏
s∈M

(
π0

od(s, b)
)Kod(s,b)

Kod(s, b)!

where ∑s∈M π0
od(s, b) = 1 and ∑o∈J ∑s∈Mo Kod(s, b) = Kd(b). The likelihood for the com-

plete sample, K ≡
{

Kod(s, b) : (s, b) ∈ M2}with probabilities Π0 ≡
{

π0
od(s, b) : (s, b) ∈ M2}

scaled by a factor Kd(b) for each firm b is:
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ℓ
(

K | Π0,K
)
= ∏

b∈M

Kd(b)! ∏
s∈M

(
π0

od(s, b)
)Kod(s,b)

Kod(s, b)!

 1
Kd(b)

= ∏
b∈M

(
∏

s∈M

Kd(b)!
Kod(s, b)!

(
π0

od(s, b)
) Kod(s,b)

Kd(b)

)

= ∏
b∈M

(
∏

s∈M

Kd(b)!
Kod(s, b)!

(
π0

od(s, b)
)∑k∈Kd(b)

I{s=s∗d(b,k)} 1
Kd(b)

)

= ∏
b∈M

(
∏

s∈M

Kd(b)!
Kod(s, b)!

(
π0

od(s, b)
)∑k∈Kd(b)

I{s=s∗d(b,k)} purchasesd(b,k)
purchasesd(b)

)

= ∏
b∈M

 ∏
s∈M

Kd(b)!
Kod(s, b)!

(
π0

od(s, b)
)∑k∈Kd(b)

I{s=s∗d(b,k)}purchasesd(b,k)

purchasesd(b)


= ∏

b∈M

(
∏

s∈M

Kd(b)!
Kod(s, b)!

(
π0

od(s, b)
) salesod(s,b)

purchasesd(b)

)

= ∏
b∈M

(
∏

s∈M

Kd(b)!
Kod(s, b)!

(
π0

od(s, b)
)πod(s,b)

)

= ∏
b∈M

 ∏
s∈M

Kd(b)!
Kod(s, b)!

(
co(s)−ζϕod(s)τ

−ζ
od

∑s′∈M co′(s′)−ζϕo′d(s′)τ
−ζ
o′d

)πod(s,b)


Therefore, the log-likelihood is proportional to:

L
(

K | Π0,K
)

∝

(
∑

b∈M
∑

s∈M
πod(s, b) ln

(
co(s)−ζϕod(s)τ

−ζ
od

))

−
(

∑
b∈M

∑
s∈M

πod(s, b) ln

(
∑

s′∈M
co′(s′)−ζϕo′d(s′)τ

−ζ
o′d

))

= ∑
d∈J

(
∑

s∈M

(
∑

b∈Md

πod(s, b)

)
ln
(

co(s)−ζϕod(s)τ
−ζ
od

))

−
(

∑
b∈M

(
∑

s∈M
πod(s, b)

)
ln

(
∑

s′∈M
co′(s′)−ζϕo′d(s′)τ

−ζ
o′d

))

= ∑
d∈J

(
∑

s∈M

(
∑

b∈Md

πod(s, b)

)
ln
(

co(s)−ζϕod(s)τ
−ζ
od

))
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− ∑
d∈J

Md ln

(
∑

s′∈M
co′(s′)−ζϕo′d(s′)τ

−ζ
o′d

)

Note that for all s ∈ M, co(s) = co c̃o(s) and ϕod(s) = ϕodϕ̃od(s) such that

(
∑

s∈Mo

c̃o(s)−ζ ϕ̃od(s)

)−1/ζ

= 1, (B.1)

∑
d∈J

c−ζ
o ϕodτ

−ζ
od

∑o′ c−ζ

o′ ϕo′dτ
−ζ

o′d
Md

∑d∈J
c−ζ

o ϕodτ
−ζ
od

∑o′ c−ζ

o′ ϕo′dτ
−ζ

o′d
Md

ϕ̃od(s) = 1. (B.2)

The likelihood equations for {c̃o(s) : s ∈ M} are given by:

∂L
(
K | Π0,K

)
∂c̃o(s)−ζ

= 0

=⇒
(

∑
d∈J

(
∑

b∈Md

πod(s, b)

)
1

c̃o(s)−ζ

)

− ∑
d∈J

Md
c−ζ

o ϕod(s)τ
−ζ
od

∑s′∈M co′(s′)−ζϕo′d(s′)τ
−ζ
o′d

= 0

=⇒
(

∑
d∈J

∑
b∈Md

πod(s, b)

)
1

c̃o(s)−ζ

− ∑
d∈J

Mdϕ̃od(s)
c−ζ

o ϕodτ
−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

= 0

=⇒ ∑
d∈J

Md
co(s)−ζϕod(s)τ

−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

= ∑
d∈J

∑
b∈Md

πod(s, b)

=⇒ ∑
d∈J

Md c̃o(s)−ζ ϕ̃od(s)
c−ζ

o ϕodτ
−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

= ∑
d∈J

∑
b∈Md

πod(s, b) (B.3)

The likelihood equations for
{

ϕ̃od(s) : (s, d) ∈ M×J
}

are given by:

∂L
(
K | Π0,K

)
∂ϕ̃od(s)

= 0
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=⇒ ∑
b∈Md

πod(s, b)
1

ϕ̃od(s)

−Md
co(s)−ζϕodτ

−ζ
od

∑s′∈M co′(s′)−ζϕo′d(s′)τ
−ζ
o′d

= 0

=⇒ Md
co(s)−ζϕodϕ̃od(s)τ

−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

= ∑
b∈Md

πod(s, b)

=⇒ c̃o(s)−ζ ϕ̃od(s)
c−ζ

o ϕodτ
−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

=
1

Md
∑

b∈Md

πod(s, b) (B.4)

The likelihood equations for
{

ϕodτ
−ζ
od : (o, d) ∈ J 2

}
are given by:

∂L
(
K | Π0,K

)
∂
(

ϕodτ
−ζ
od

) = 0

=⇒ ∑
s∈Mo

∑
b∈Md

πod(s, b)
1

ϕodτ
−ζ
od

−Md ∑
s∈Mo

co(s)−ζ ϕ̃od(s)

∑s′∈M co′(s′)−ζϕo′d(s′)τ
−ζ
o′d

= 0

=⇒ Md
c−ζ

o ϕodτ
−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

= ∑
s∈Mo

∑
b∈Md

πod(s, b)

=⇒
c−ζ

o ϕodτ
−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

=
1

Md
∑

s∈Mo

∑
b∈Md

πod(s, b) (B.5)

Dividing equation (B.4) by equation (B.5), we obtain:

c̃o(s)−ζ ϕ̃od(s)
c−ζ

o ϕodτ
−ζ
od

∑o′ c−ζ

o′ ϕo′dτ
−ζ

o′d

c−ζ
o ϕodτ

−ζ
od

∑o′ c−ζ

o′ ϕo′dτ
−ζ

o′d

=
1

Md
∑b∈Md

πod(s, b)
1

Md
∑s∈Mo ∑b∈Md

πod(s, b)

=⇒ c̃o(s)−ζ ϕ̃od(s) =
∑b∈Md

πod(s, b)

∑s∈Mo ∑b∈Md
πod(s, b)

(B.6)

Substituting equations (B.2) and (B.5) in equation (B.3), we obtain:

∑
d∈J

Md c̃o(s)−ζ ϕ̃od(s)
c−ζ

o ϕodτ
−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

= ∑
d∈J

∑
b∈Md

πod(s, b)
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=⇒ c̃o(s)−ζ ∑
d∈J

ϕ̃od(s)
c−ζ

o ϕodτ
−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

Md = ∑
d∈J

∑
b∈Md

πod(s, b)

=⇒ c̃o(s)−ζ ∑
d∈J

c−ζ
o ϕodτ

−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

Md = ∑
d∈J

∑
b∈Md

πod(s, b)

=⇒ c̃o(s)−ζ ∑
s∈Mo

∑
d∈J

∑
b∈Md

πod(s, b) = ∑
d∈J

∑
b∈Md

πod(s, b)

=⇒ c̃o(s)−ζ =
∑d∈J ∑b∈Md

πod(s, b)

∑s∈Mo ∑d∈J ∑b∈Md
πod(s, b)

(B.7)

Dividing equation (B.6) by equation (B.7), we obtain:

ϕ̃od(s) =

∑b∈Md
πod(s,b)

∑s′∈Mo ∑b∈Md
πod(s′,b)

∑d∈J ∑b∈Md
πod(s,b)

∑s′∈Mo ∑d∈J ∑b∈Md
πod(s′,b)

Putting these together and simplifying, we obtain:

(
c̃o(s)−ζ

)∗
=

∑b∈M πod(s, b)
∑b∈M πod(•, b)

(
ϕ̃od(s)

)∗
=

∑b∈Md
πod(s,b)

∑b∈Md
πod(•,b)

∑b∈M πod(s,b)
∑b∈M πod(•,b)(

c−ζ
o ϕodτ

−ζ
od

∑o′ c
−ζ
o′ ϕo′dτ

−ζ
o′d

)∗
=

1
Md

∑
b∈Md

πod(•, b)

C Appendix: Aggregation

C.1 Continuum Approximation for Large Network Economies

The following definition formalizes the notion of the limiting economy in the context of
this paper.

Definition 4. Consider a sequence of finite economies {Et : t ∈N}where Et ≡ {Mt,Lt,Jt}
is such that the tth economy has the formMt = {m1, · · · , mMt} ⊂ [0, 1] ,Lt = {ℓ1, · · · , ℓLt} ⊂
[0, 1] and Jt = J . The uniform distribution on Mt is given by UM

t
(
M0

t
)
=

M0
t

Mt
for all

M0
t ⊂ Mt. Similarly, the uniform distribution on Lt is given by U L

t
(
L0

t
)
=

L0
t

Lt
for all

L0
t ⊂ Lt. Then, {Et : t ∈N} is a discretizing sequence of economies if it satisfies:
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1. Mt ⊂Mt+1 and Lt ⊂ Lt+1 for all t,

2. limt→∞ UM
t (Mt ∩ [al, ah]) = U ([al, ah]),

3. limt→∞ U L
t (Lt ∩ [al, ah]) = U ([al, ah]),

where U (•) denotes the uniform distribution with support over [0, 1] and [al, ah] ⊂ [0, 1].

Assumption 2. The discretizing sequence of economies {Et : t ∈N} satisfies the following con-
ditions:5

1. {λt, a0,t : t ∈N} is such that λt = o (Mt) and λta
ζ
0,t = Θ(1)

2. {Md,t, Ld,t : d ∈ J , t ∈N} is such that Md,t = Θ (Mt) and Ld,t = Θ (Lt) for all d ∈ J

C.2 Proof of Proposition 3

C.2.1 Distribution of the Lowest Effective Cost

We begin by characterizing the distribution of the lowest effective cost available to buyer
b located at d, Fpd (p) = P

(
p∗d (b, k) ≤ p

)
. It is convenient to think about the complemen-

tary probability P
(

p∗d (b, k) ≥ p
)
, the probability that the lowest effective price faced by

the buyer is no less than p. To do so, we evaluate the probability with which b receives
no offers less than than p. The lowest cost offer p can be from any one of the locations
in J . We evaluate the probability with which this offer is from any given location o and
multiply it across all locations. The probability with which b receives one offer with an
effective cost no less than p from o:

∏s∈Mo

(
1− λϕod(s)

M I
(

co(s)τod
aod(s,b,k) ≤ p

))
if o ̸= d

∏s∈Mo\{b}

(
1− λϕod(s)

M I
(

co(s)τod
aod(s,b,k) ≤ p

))
if o = d

Under Assumption 2, the probability with which b encounters no supplier who can
deliver at a cost no less than p across all locations is given by:

Fpd (p) = 1− ∏
s∈M\{b}

(
1− λϕod(s)

M
I

(
co(s)τod

aod(s, b, k)
≤ p

))
5For any two functions f (n) and g(n), f (n) = o (g(n)) =⇒ limn→∞

f (n)
g(n) = 0 and f (n) = Θ(g(n) =⇒

lim supn→∞
| f (n)|
g(n) < ∞ and lim supn→∞ |

f (n)
g(n) |> 0.
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= 1− exp

(
−∑

o
λµoE [ϕod(·)]P

(
co(·)τod

aod(·, b, k)
≤ p

))

Using the limit limt→∞ λta
ζ
0,t → 1, this can be further simplified as 1− exp

(
−Ad pζ

)
where Ad = ∑o µoτ

−ζ
od E [ϕod(·)]E

[
co(·)−ζ

]
is obtained as follows:

Ad pζ = ∑
o

λµoE [ϕod(·)]P

(
co(·)τod

aod(·, b, k)
≤ p

)
= ∑

o
λµoE [ϕod(·)]E

[
1− Fa

(
co(·)τod

p

)]
=

(
∑
o

µoτ
−ζ
od E [ϕod(·)]E

[
co(·)−ζ

])
pζ

=⇒ Ad = ∑
o

µoτ
−ζ
od E [ϕod(·)]E

[
co(·)−ζ

]
C.2.2 Derivation of Market Access

co(·) = w1−αo
o

 ∏
k∈Ko(·)

po(·, k)1/Ko(·)

αo

=⇒ E
[
co(·)−ζ

]
= E


w1−αo

o

(
∏k∈Ko(·) po(·, k)1/Ko(·)

)αo

zo(·)


−ζ


= w−ζ(1−αo)
o E

 ∏
k∈Ko(·)

po(·, k)−αoζ/Ko(·)

E
[
zo(·)ζ

]

= w−ζ(1−αo)
o

E

E

 ∏
k∈Ko(·)

po(·, k)−αoζ/Ko(·) | Ko

E
[
zo(·)ζ

]

= w−ζ(1−αo)
o

E

 ∏
k∈Ko(·)

Γ
(

1− αo

Ko(·)

)
A

αo
Ko(·)
o

 zζ
o

= E

[
Γ
(

1− αo

Ko(·)

)Ko(·)
]

zζ
ow−ζ(1−αo)

o Aαo
o
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This implies that {Ad}d∈J solves the following fixed point problem:

Ad = ∑
o

µoE [ϕod(·)] τ
−ζ
od zζ

oE

[
Γ
(

1− αo

Ko (·)

)Ko(·)
]

w−ζ(1−αo)
o Aαo

o

It can be similarly shown that effective prices for needs faced by households is also
given by Fpd (·) The following lemma states that the above fixed point problem that solves
for market access is well-defined in the sense that it admits a unique positive solution. The
proof strategy follows from Allen et al. (2020).

Lemma. The following system of equations

Ad = ∑
o

Rod Aαo
o ,

Rod = µoE [ϕod(·)] τ
−ζ
od zζ

oE

[
Γ
(

1− αo

Ko (·)

)Ko(·)
]

w−ζ(1−αo)
o Aαo

o .

1. has at least one positive solution

2. has at most one positive solution (up to scale)

3. the unique solution can be computed as the limit of a simple iterative procedure.

Proof. First, I establish existence of positive solution to the system of equations. Define
operator T : R

J
++ → R

J
++ where T (A) = (∑o Ro1Aαo

o , · · · , ∑o RoJ Aαo
o )
′. Note that all

components of Rod are positive and finite. Then, by construction, for any d, not all Rods
are zero. Therefore, for any A≫ 0, ∑o Ro1Aαo

o ≥ A > 0. Further, there exists Ā < ∞ such
that ∑o Rod Aαo

o ≤ Ā. Now consider the operator T : A → A defined by T (A1, · · · , AJ) =

(∑o Ro1Aαo
o , · · · , ∑o RoJ Aαo

o )
′. Suppose A =

{
A ∈ R

J
++ | A ≤ Ad ≤ Ā∀d

}
.Then, if A ≫

0, it follows that T (A) ≫ 0. Note that A is closed and bounded. Since A ⊂ R
J
++,

this implies that A is compact. Further, A is non-empty and convex, and T is continuous.
Then, by Brouwer’s fixed point theorem, T (•) has a fixed point. This establishes existence
of a solution the system of equations.

To establish uniqueness, let’s suppose by way of contradiction that the system of equa-
tions has two different solutions A(0), A(1) that are not linear transformations of each

other. Denote ā = maxd
A(1)

d

A(0)
d

and a = mind
A(1)

d

A(0)
d

. Notice that ā
a ≥ 1. Thus the system of

equations can be expressed as:
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A(1)
d

A(0)
d

=
∑o Rod

(
A(1)

d

A(0)
d

)1−αo (
A(0)

d

)1−αo

A(0)
d

Suppose d̄ = arg maxd

(
A(1)

d

A(0)
d

)
and α = min αo, then we have:

A(1)
d̄

A(0)
d̄

= ā

=⇒
∑o Rod̄

(
A(1)

o

A(0)
o

)1−αo (
A(0)

o

)1−αo

A(0)
d̄

= ā

=⇒
∑o Rod̄ ā1−α

(
A(0)

o

)1−αo

A(0)
d̄

≥ M

=⇒
∑o Rod̄

(
A(0)

o

)1−αo

A(0)
d̄

ā1−α ≥ ā

=⇒ āα ≤ 1

=⇒ ā ≤ 1

Similarly, we can show that a ≥ 1. This implies that ā
a ≤ 1. But by construction ā

a ≥ 1.
Therefore, it must be the case that a

a = 1 or A(0) = A(1). This establishes uniqueness.
Next, I show that the solution to the system of equations can be obtained via a simple

iterative procedure. Starting from any strictly positive A(0), we construct a sequence A(t)

successively in the following way,

A(t)
d = ∑

o
Rod

(
A(t−1)

o

)αo

Denote ā(t) = maxd
A(t)

d

A(t−1)
d

and a(t) = mind
A(t)

d

A(t−1)
d

. Notice that ā(t)
a(t)
≥ 1.

Suppose d̄ = arg maxd

(
A(t)

d

A(t−1)
d

)
and α = min αo, then we have:
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A(t)
d̄

A(t−1)
d̄

= ā(t)

=⇒
∑o Rod̄

(
A(t−1)

o

A(t−2)
o

)1−αo (
A(t−2)

o

)1−αo

A(t−1)
d̄

= ā(t)

=⇒
∑o Rod̄

(
A(0)

o

)1−αo

A(0)
d̄

(
ā(t−1)

)1−α
≥ ā(t)

=⇒ ā(t)(
ā(t−1)

)1−α
≤ 1

Similarly, we can show that a(t)

(a(t−1))
1−ᾱ ≥ 1. This implies the following

ā(t)(
ā(t−1)

)1−α
≤ a(t)(

a(t−1)
)1−ᾱ

=⇒ ā(t)

a(t)
≤

(
ā(t−1)

)1−α

(
a(t−1)

)1−ᾱ

≤

(
ā(t−1)

)1−α

(
a(t−1)

)1−α

=⇒ ā(t)

a(t)
≤ ā(t−1)

a(t−1)

Since ā(t)
a(t)
≥ 1∀t, this implies that limt→∞

ā(t)
a(t)

= 1. That is, the solution can be computed
as the limit of a simple iterative procedure.

C.3 Proof of Proposition 4

The probability with which any firm at d sources from firms at o for any of its tasks is
given by

π0
od (•,−) =

(
lim
t→∞

Mo

M

)(
lim
t→∞

1
Mo

∑
s∈Mo

π0
od(s,−)

)

42



=

(
lim
t→∞

Mo

M

)(
lim
t→∞

1
Mo

∑
s∈Mo

co(s)−ζϕod(s)τ
−ζ
od

Ad

)

=
µoE [ϕod(·)]E

[
co(·)−ζ

]
τ
−ζ
od

Ad

=

µozζ
ow−ζ(1−αo)

o E

[
Γ
(

1− αo
Ko(·)

)Ko(·)
]

Aαo
o ϕodτ

−ζ
od

Ad

C.4 Proof of Proposition 5

For any realization of σ, labor demand by firm b at d can be expressed as:

ld(b, σ) =
1

wd (σ)
(1− αd) cd(b, σ)yd(b, σ)

Substituting the above expression in the labor market clearing for location d, we ob-
tain:

Ld = ∑
b∈Md

ld(b, σ)

= ∑
b∈Md

1
wd (σ)

(1− αd) cd(b, σ)yd(b, σ)

=⇒ ∑
b∈Md

cd(b, σ)yd(b, σ) =
wd (σ) Ld

1− αd

Goods market clearing condition for firm s located at o can be simplified as:

yo(s, σ) = ∑
d

∑
b∈Md

∑
k∈Kd(b)

τod(s, σ)mod(s, b, k, σ)

aod(s, b, k, σ)

+ ∑
d

∑
i∈Ld

∑
n∈Nd(i)

τod(s, σ)qod(s, i, n, σ)

god(s, i, n, σ)

=⇒ co(s, σ)yo(s, σ) = ∑
d

αd ∑
b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1 {s = s∗d(b, k, σ)}

 cd(b, σ)yd(b, σ)

+ ∑
d

∑
i∈Ld

 1
Kd(i)

∑
k∈Kd(i)

1 {s = s∗d(i, k, σ)}

 (wd(σ) + Πd(σ))
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=⇒ ∑
s∈Mo

co(s, σ)yo(s, σ)︸ ︷︷ ︸
(1) Supply

= ∑
d

αd ∑
b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1 {s∗d(b, k, σ) ∈ Mo}

 cd(b, σ)yd(b, σ)

︸ ︷︷ ︸
(2) Intermediate Input Demand

+ ∑
d

∑
i∈Ld

 1
Kd(i)

∑
k∈Kd(i)

1 {s∗d(i, k, σ) ∈ Mo}

 (wd(σ) + Πd(σ))︸ ︷︷ ︸
(3) Final Consumption Demand

We can simplify term (1) by making use of the labor market clearing condition as:

Supply = ∑
s∈Mo

co(s, σ)yo(s, σ)

=
wo(σ)Lo

1− αo

We can simplify term (2) as follows:

Intermediate Input Demand

= ∑
d

αd ∑
b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1 {s∗d(b, k, σ) ∈ Mo}

 cd(b, σ)yd(b, σ)

= ∑
d

αd

(A)︷ ︸︸ ︷
1

Md
∑

b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1 {s∗d(b, k, σ) ∈ Mo}

 cd(b, σ)yd(b, σ)

1
Md

∑
b∈Md

cd(b, σ)yd(b, σ)︸ ︷︷ ︸
(B)

× ∑
b∈Md

cd(b, σ)yd(b, σ)︸ ︷︷ ︸
=

wd(σ)Ld
1−αd

Term (A) can be simplified as follows:
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(A) =
1

Md
∑

b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1 {s∗d(b, k, σ) ∈ Mo}

 cd(b, σ)yd(b, σ)

t→∞−−→ E

 1
Kd(·) ∑

k∈Kd(·)
1 {s∗d(·, k, σ) ∈ Mo}

 cd(·, σ)yd(·, σ)


= E

 1
Kd(·) ∑

k∈Kd(·)
1 {s∗d(·, k, σ) ∈ Mo}

E [cd(·, σ)yd(·, σ)]

= E

E

 1
Kd(·) ∑

k∈Kd(·)
1 {s∗d(·, k, σ) ∈ Mo}

 | Kd

E [cd(·, σ)yd(·, σ)]

= E

 1
Kd(·) ∑

k∈Kd(·)
E [1 {s∗d(·, k, σ) ∈ Mo} | Kd]

E [cd(·, σ)yd(·, σ)]

= E

 1
Kd(·) ∑

k∈Kd(·)
E [1 {s∗d(·, ·, σ) ∈ Mo}]

E [cd(·, σ)yd(·, σ)]

= E [1 {s∗d(·, ·, σ) ∈ Mo}]E [cd(·, σ)yd(·, σ)]

= E [1 {s∗d(·, ·, σ) ∈ Mo}]E [cd(·, σ)yd(·, σ)]

= πod (•,−, σ0)E [cd(·, σ)yd(·, σ)]

Term (B) can be simplified as follows:

(B) =
1

Md
∑

b∈Md

cd(b, σ)yd(b, σ)

t→∞−−→ E [cd(·, σ)yd(·, σ)]

Substituting (A) and (B) back in the Intermediate Input Demand,we obtain:

Intermediate Input Demand = ∑
d

αdπod (•,−, σ0)
wd(σ)Ld
1− αd

We can simplify term (3) as follows:

Final Consumption Demand
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= ∑
d

∑
i∈Ld

 1
Kd(i)

∑
k∈Kd(i)

1 {s∗d(i, k, σ) ∈ Mo}

wd(σ)

= ∑
d

 1
Ld

∑
i∈Ld

 1
Kd(i)

∑
k∈Kd(i)

1 {s∗d(i, k, σ) ∈ Mo}

wd(σ)Ld

t→∞−−→∑
d

E

 1
Kd(i)

∑
k∈Kd(i)

1 {s∗d(i, k, σ) ∈ Mo}

wd(σ)Ld

= ∑
d

E

E

 1
Kd(i)

∑
k∈Kd(i)

1 {s∗d(i, k, σ) ∈ Mo} | Nd

wd(σ)Ld

= ∑
d

E

 1
Kd(i)

∑
k∈Kd(i)

E [1 {s∗d(i, k, σ) ∈ Mo} | Nd]

wd(σ)Ld

= ∑
d

E

 1
Kd(i)

∑
k∈Kd(i)

E [1 {s∗d(i, k, σ) ∈ Mo}]

wd(σ)Ld

= ∑
d

E [1 {s∗d(·, ·, σ) ∈ Mo}]wd(σ)Ld

= ∑
d

E [1 {s∗d(·, ·, σ) ∈ Mo}]wd(σ)Ld

= ∑
d

πod (•,−, σ0)wd(σ)Ld

Putting these together we can further simplify the goods market clearing condition to
obtain the desired result as follows:

wo(σ)Lo

1− αo
= ∑

d
πod(•,−, σ0)

(
αd

1− αd
+ 1
)

wd(σ)Ld

=⇒ wo(σ)Lo

1− αo
= ∑

d
πod(•,−, σ0)

wd(σ)Ld
1− αd

Since {wd(σ)}d solves the above system of equations for a given realization of σ0, irre-
spective of the realization of σ1, we conclude that wd(σ) = wd (σ0). That is, {wd : d ∈ J }
solves the following system of equations for given realization of σ0, irrespective to real-
ization of σ1.

woLo

1− αo
= ∑

d
πod(•,−)

wdLd
1− αd
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D Appendix: Quantitative Analysis

D.1 Expected Utility & Welfare Changes

Households residing at location d are heterogeneous both in their numbers of needs and
match-specific taste shocks of using different suppliers’ goods to fulfill their needs. Wel-
fare at any location is then calculated in expectation. That is, Vd = E [Vd (·)]. With Cobb-
Douglas utilities across tasks, indirect utility of household i residing at d is given by:

Vd(i) =
wd

∏k∈Kd(i) pd(i, k)1/Kd(i)

Expected indirect utility of households at location d can then be derived as:

Vd = E [Vd (·)]

= E

wd ∏
k∈Kd(·)

pd(·, k)−1/Kd(·)


= wdE

E

 ∏
k∈Kd(·)

pd(·, k)−1/Kd(·) | Kd


= wdE

 ∏
k∈Kd(·)

E
[

pd(·, ·)−
1/Kd(·) | Kd

]
= wdE

 ∏
k∈Kd(·)

Γ
(

1− 1
ζKd (·)

)
A

1
ζKd(·)
d


= E

[
Γ
(

1− 1
ζKd (·)

)Kd(·)
]

wd A
1
ζ

d

Welfare changes, i.e., changes in expected indirect utility at location d in response to
shocks can be calculated as:

V̂d = ŵd Â1/ζ

d ,

where ŵd denotes the change in wage and Âd denotes change in market access at d.
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